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ABSTRACT

A detailed global and local analysis of smooth solutions of the variational

problem
s

(li) 6 f K2(s)ds= 0
0

subject to position function constraints

(lii) Xs =pip 0< so < s<".. < s
01

is carried out. Here [pi}m c R2  is prescribed, x is a vector-valued func-

tion with curvature K(s) at arc length s and the interpolation nodes s.1
are free. Problem (1) may be viewed as the mathematical formulation of the

draftsman's technique of curve fitting by mechanical splines.

Although most of the basic equations satisfied by these nonlinear spline

curves have been known for a very long time, calculation via elliptic integral

functions has been hampered by a lack of understanding concerning what precise

information must be specified for the stable determination of a smooth, unique

interpolant modelling the thin elastic beam. In this report, sharp character-

izations are derived for the extremal interpolants as well as structure theorems

in terms of inflection point modes which guarantee uniqueness and well-posedness.

A certain type of stability is introduced and studied and shown to be

related to (linearization) concepts associated with piecewise cubic spline
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ABSTRACT (continued)

functions, which have been studied for decades as a simplification of the

nonlinear spline curves. Many examples are introduced and studied.

AMS (MOS) Subject Classifications: 41A05, 49B15, 49B50, 49F22, 65D10

Key Words: Nonlinear spline curves, elastica, manifolds of extremals,

perturbation stability, mode, ray configuration, rectangular

configuration.
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SIGNIFICANCE AND EXPLANATION

The mathematical formulation of curve fitting by mechanical splines,

i.e. thin, flexible, elastic beams passing through freely rotating sleeves

anchored at fixed locations, is studied in this report. These are called

elastica or nonlinear spline curves.

As contrasted with the mathematically idealized splines, which have

proven to be of considerable utility and concerning which much information

is available, the nonlinear splines are relatively poorly understood. The

writers are attempting to understand and systematically construct these

curves. Computer graphics obtained by other workers suggest remarkable

efficiency of the elastica for curve fitting. This is perhaps not too

surprising since the nonlinear spline represents an equilibrium position

of a thin beam.

M .-.:.oncei

The responsibility for the wording and views expressed in this descriptive suary
lies with MRC, and not with the authors of this report.



EQUILIBRIA OF THE CMVTUU FUNCTIONAL AND MANIFOLDS

OF NONLINEAR INTERPOLATING SPLINE CURVES

Michael Golomb
I and Joseph Jerome

2

1l. Introduction

Let P - {poop,... ,p*) be an ordered set of points in the Euclidean plane (the p,

need not be distinct) and let it be required to pass a smooth curve through these points in

the prescribed order. It is an old technique of draftsmen to use a mechanical spline to

accomplish this. If the spline is considered as a thin elastic beam of uniform cross section

with a central fiber that in inextensible, then the strain energy of the bent spline of length

is given by

a 2 (s)ds + 9

0

where sc(s) is the curvature of the fiber at arc length s and A. B are constants. An

equilibriun position of the spline makes the energy functional stationary, hence satisfies

(l.li) 2 s2(s)ds 0
0

This equation together with the interpolation conditions

(l.lii) x(si Pip 0 < so < < ... < S_

for the position function x, constitute the mathematical formulation of the draftsman's

technique. The present article deals with analytical (not graphical nor computational) prob-

leas arising from system (1.1). In elasticity theory the solutions of (1.1i) or of the more

general equation
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(1.2) 6 (A (+ K 2(s)]ds) -0

0

where A is a constant, are known as elastics. Their study dates back to the Bernoulli

broths onditi n o hers (see Love 8, Ch. XpI] for classical results). The boundary con-

ditions in traditional elasticity theory have little in comon with the interpolation tondi-

tions (.ii). To mterialie the latter ones in the beam model one my think ls freely

rotating all sleeves, anchored at the points po,...,pm, through which the splne can slide

without friction. We refer to the solutions x of the variational problem ( .hi, ii) as

otental P-interpolanti. In some parts of the present paper we deal with extr il n e i th-

-- proscribed P-interpolants, in which % - s o  is given in addition to P. To mterialize

this condition one replaces the sleeves at po,p by pins which allow no sliding. In other

00

P, hence can be attained only in the trivial case where P is interpolated by a straight

seqment. Lee and Forsythe 17], who make a substantial study of the variational problem

(l.1i, ii) call the solutions (when existence is hypothesized) local minima. However, it will

be proved in 16 below that, in the simple case where P consists of 2 points, there are

countably many nontrivial extreml P-interpolants none of them constitutes a local minimum of

the energy. This makes it evident that an extremal P-interpolant is, in general, not a local

minimum (for a detailed discussion of the stability problm see 15]).

The existence questions for interpolating elastica are much more subtle. For length-

constrained or length-prescribed interpolants one can prove existence of e etremals (actually

global minima) by the direct methods of the calculus of variations, because one has compact-

ness in a suitably chosen function space (this was done in 131 and 16), see also the
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Appendix of this paper). This is not the case for interpolants with no length restriction,

and the existence of such extremals interpolating n points in general position, and whether

they are local minima or not remains an open question (some progress along these lines has

been achieved by M. Golcamb (41, [51). Computational work on extremal interpolants is more

advanced (cf. M. Malcolm [101), although decisive progress in this area is alLo hampered by

the lack of general existence and uniqueness theorems.

We now give a brief account of the content of this paper. In 52 we define the function

classes in which the extremal interpolants are sought. We also characterize them by Euler

equations (for the Cartesian coordinates), boundary and regularity conditions. In 13 we do

the same for the "normal representation" of the extremals, by which we mean the function

s - 8(s), which is the angle that the extremal makes at arc length s with a reference line.

The normal representation 8 of a length-prescribed extremal P-interpolant appears as the

solution of a free multi-point boundary value problem for S0,...,Sm-l , 0 with sm - so pre-

scribed:

(i) sin 6(s) * ), cos 8(s)- 0, il < si

(1.3) (i) 8(s o ) - 8(s) = 0 ,

1 1 2 2
(iii) )Ci+l - os S(si) + W 2+l - U2)sin 0(s) 0O i 1

For the general extremal P-interpolant, (l.3ii) holds also for i = m and so and sm  are

1 2
free as well with P m+l ,Pm+l , 0. The function 6 and the knot abscissas si are the

1 2
unknowns; the multipliers 1 i are determined from the interpolation conditions. In 54 it

is shown how certain families E(k k) of extramal interpolants with prescribed numbers

(k ... ) of inflection points between knots ("mode"), can be realized as smooth 2m-diman-

sional manifolds N(k ) ..k . The inverse mapping from M (kip...k into the position

function space of the extrmals is continuous when the latter is topologized by a suitable

metric. Thus, the mode (ki , ... 'km) of an entremal suitably delineat4a uniqueness and well-

posedness. The union of the E(kl,...,k ) consists of only those extramals which have a

-3-



genuine knot and no inflection point at each interior interpolation node. Points in the

intersection of the boundaries of the manifolds M(k correspond to singular points

in position function space. For these boundary elements some interior knot is spurious (" iE

not discontinuous) or is an inflection point. We give two examples to demonstrate this.

In 15 we study the existence of elastica spline interpolation in the small. Does the

set of configurations P for which extremal interpolants exist have nonempty interior in

R 2m? More specifically, which P in It2m  are interior points of this set? We show, by

use of the implicit function theorem that near a given configuration P with extremal inter-

polant 3 there is a local diffeomorphim between configurations and extremal interpolants

if (EP) satisfies a certain hypothesis (A). It requires that a homogeneous linear differ-

ential equation with variable coefficients depending on E and with homogeneous linear side

conditions has no nontrivial solution. Another formulation of this condition is that a com-

putable function (involving many quadratures) be jO 0 at the end point of E. It is easily

verified that the ray configuration Pot with the trivial extremal interpolant E., satis-

fies (A), so that the existence of extremal P-interpolants for all configurations P in

some Euclidean neighborhood of any ray configuration is thereby demonstrated. The differential

equation problem of hypothesis (A) reduces to the natural cubic spline interpolation problem

in the case (POE 0 ). This demonstrates that cubic spline interpolation can be interpreted

as the result of linearization of extremal interpolation (in the sense of making fK2ds

stationary) near the trivial interpolant for the ray configuration. This proof makes precise

the old idea that cubic splines are in some sense the "smoothest" interpolants. Of course,

it has long been known that cubic spline functions arise from minimizing the quadratic func-

tional f(D2f) 2 among the interpolating functions f. Since the linear operator D2

supposedly approximates the nonlinear curvature operator, the cubic splines recommend them-

selves as near optimally smooth interpolants. The "hairpin" confirguration P with a loop

interpolant 3 is given as an example where hypothesis (A) is not satisfied. There are con-

figurations close to 0 for which there exists no extremal interpolant near E and there

are other configurations close to I for which there do exist extremal interpolants

-4-



near E. This seems to be the first known example demonstrating singular behavior in nor-

linear spline interpolation.

56 contains an exhaustive study of extremal P-interpolants for the case where P consists

of two points. It is shown that there exist, besides the trivial extremal, countably many non-

trivial ones of distinct integral mode, that all of them are obtained by simple transformations

from a basic one, all have the same length and (cf. (5]) none makes the potential energy a

local minimum. Composition of these 2-point extremals yields countably many extremal P-inter-

polants for various special configurations P. §6 also exhibits countably many angle-

prescribed and countably many length-prescribed 2-point extremals.

In 57 some special cases of closed extremal P-interpolants are considered. It is shown

that the only closed length-prescribed extremal without knots are the repeatedly traversed

circle and figure eight configurations. Formally, the Euler equation is the limiting case cf

the Euler equation for an elastic circular ring under hydrostatic pressure p as p - 0

(cf. (11 and (121). The ring, however, is not an elastica since its deformations satisfy

stress-strain relationships. We also consider closed extremals which are not length-pre-

scribed. Here the extremals in §6 are used to construct infinitely many closed extremals

for several special P-configurations, for example where P is the set of vertices of a

regular polygon. In particular, if a regular m-gon, m > 2, is inscribed in the unit circle,

then a circumscribed extremal exists with length

2m sin m 2 m
m 2 m

/m"r2[2E~ (- /2; - F (1 /2; 0)
2 a 2 m

where cos $m - cos w/r. There are similar formulas for the energy Urm and the arc length

s (8); of interest is the result that (0/ M as m . m, so that the circumscribed

extremals have the unit circle as a limiting configuration. These extremals are stable,

i.e. they make the potential energy a local minimum, as proved in (5.

-5-



I 2. Regularity and Character izations of open Extremals

For tkopoit p - (p 1 ,p 2 ) and q - (q1, q 2 ) in real Euclidean space vs w employ

the inner product q p pq 1 + p q , the distance Ip-qi - I (p-q) (p-q) 1/2 and the* exterior

1 2 2 1 1,2product (p~qI - p q -p q of such points. We consider mappings x -x (zX ) of the unit

interval I - 10.11 to 3R* We denote by H2 (1) the real Hilbert space of those mappings

x such that the derivative xis absolutely continuous and L 2 (1) , equipped with the

inner product

(2.1) (zy) H f (y + 1y;+xy
2 1

We say x is a regular element of H 2 if ji(t)l > 0 for all t c I. We observe that the

regular elements of H2  form an open subset H req of H22 2*

For x eH 2we define the arc length map as t I * U by

(2.2) sx~t) f 1;I1, te I
0

If x CH2 the a.hsa nvre% :1,s] - (0,11, where assd), and in this

case the function x e s-1 [ 0,;) -* has an absolutely continuous derivative, and square-x

11

which has parametric representation x - x Ct). Writing x e a; s , vs say that is

the arc length parametrization of the curve C. Clearly x e H2 CO.;) and we have:

2

If e then its curvature K : tIndeiedb
x 2  x _ _ seieb

(2.3) K XCt) -(x'x1 @s xCt) - xi~I'tt e I

J -6-



Suppose x i Heg and a (1) - . Then we define the curvature functional,
2 x

(2.4) U(x) - fa 2 _2 _ f 2

0 0 0

Note that (2.4) defines U as a mapping of H into It The equivalent expression,
2+

(2.5) U(x) - f c;' [ 21;1-5

is independent of the parametrization of x in the following sense. If u is a C -map

of I onto itself with u> 0 and x - y ou then

U(x) J f[, J2I;I-5 - u(y)
I

If x f Hr
eg  

then U is Frechet-differentiable at x and, for any increment y E H2 .

(2.6) U' (x) tyl - f {2(xxIC(xyl + [yx]xI - 5 ;,'Jl;1-7
I

If the variable of integration is chosen to be sx, (2.6) simplifies to

(2.7) U'(x)(y] - 0 (2xy -3KxY)dsx ; x- .s, Y - Y. s,0 K

2Let 0 poP,...,pI be fixed points in R2 , not necessarily distinct, but

Pi-l p' i - ],...m, and let P denote the ordered set {po,Pl,....,pm . We refer to

P as a configurato In A If x C H2eg is such that x(ti) i (i - 0,1,...,m) for

sane 0 < to < t1 < ... < t 1 < we say the curve x is an admissible P-interpolant, with

knots pi (i - O,...,m). The terminals x(O), x(l) may or may not be coincident with the

terminal knots P0 ,p,. The P-interpolants defined here are to be considered as open even if

x(O) - x(l). In the physical interpretation p-p4 for some i j J means that the beam is

constrained to pass through two sleeves which are fixed at the same point pi but can rotate

independently of each other.

-7-



Suppose x is a fixed admissible P-interpolant and x xo s is its arc length para-
x

metrization, x (1) - s its length, xUsi) 0,I ... ,M) its knots. Given any

z E H2 lot z- . 9 x be the parametrization of z which uses the arc length of x as

the parameter, and assume z(si) = 0 i = 0,l,...,m). For cEi sufficiently small, x + ;z

is an admissible P-interpolant and

(2.8) U(x+Cz) - U(x) C U'(x)[z] + o(c) as c - 0

This justifies the following

Definition 2.1. The admissible P-interpolant x, with arc length parametrization

- -0 knots pi " x(s) (i = 0,1,...,m), length s s (1), is an extremal P-inter-

polant if

(2.9) U'(x)[zj = 0

i.e.,

(2x z -3Kx~ =0 z
0

for every z e H2 satisfying z(si) 0 (i 0

The following proposition follows from (2.8) by the usual arguments of the calculus of

variations. It helps to explain the interest in extremal P-interpolants.

Proposition 2.1. Suppose the admissible P-interpolant x minimizes the curvature functional

U locally, i.e.

U(x) < U(y)

for every admissible P-interpolant y in a neighborhood of x in H2 . Then x is an

extremal P-interpolant.

The three major propositions of this section follow. We use the notation yJ for the

restriction of a map y to the interval J.

-8-[



Pro osition 2.2. The admissible P-interpolant x with arc length parametrization x, knots.

pi - i (i = 0,...,m), and length s, is extremal if and only if the conditions

(i x c [,s], x(s) - 0 for 0 < s < S and s s < S

(2.10)

(ii) (2x + 3Kx x) (s) - ci C IR for s - i

hold with x- f C (ssi-1 1si) (i - 1'...,m).

Remark 2.1. Throughout the paper we use the same symbol to denote regularity classes for

both scalar and vector functions.

Proof: The implication (2.10) I> (2.9) is routine and follows upon decomposing [0,s] into

subintervals determined by the sis dot-multiplying (2.1011) by z, integrating by parts

and summing; the continuity of xz , the equations z(si) 0 (i - O,...,m) and the equations

* of (2.10) easily yield U'Cx) [zi - 0.
Conversely, if (2.9) holds then, selecting z c C [0,;] with support in [si,s

ii+l

i fixed, we have
Si+l1 . _

L (2x + F)z= 0

where F = 3K2 x. By elementary distribution theory, (2x + F)(ii- is in
x Csts i~)

C(;i~s+1 ) and

D (2x + F)- - - 0

It follows that

(2x 3 x) - - " ci
x *"

and, recursively, (sK - e C(;if,; +l). To prove the continuity of x at an interior

knot sit select u in C!O,s) with support in [i-,Si+l] satisfying u(s) 0,

-9-



u'(s) . 1 and put z - (u,O). Then, from (2.9) and integration by parts,

K1Si+l .. 21o.0 (2 x + 3 xz)+ 1,)xs i + 0) -~ )
s. 1

Since the first term equals

ciz(si) - 2(8i )) + ci (Zlsi+) - zlsi) ,

i W i z i - 1 + 4 . £ 4 .1(z s i ~ M
-l - 2- -~,m

which is clearly zero, we conclude that 0x - S is in C (; ). A similar argument

works for 2 .

if s i  is either so - 0 or sm - a, jumps are replaced by one-aided limits and one

concludes x(s0 + 0) - x(sm - 0) - 0. Assume now m < a. One argues as above that

(2x + 3K X) G cM

and that x is continuous at s . We show that c - 0. Indeed, select u e C[0,;], withU U

u E 0 for 0<s < s , satisfying u(s) 1, =0, and put z = (u,O). Then, from

(2.9) and integration by parts over Is mS]

0 - cm(z(s) - ( ()) =c

2
and a similar result holds for cM . Thus c - 0. By (2.151) of Proposition 2.4 to follow,

we conclude that K2 (a) - 0 for 9 < s I s n particular, x(s) - 0 for s< s < s,x m am

and, by continuity, for sm < a < s. A similar proof holds if 0 < ao • This completes the

proof of the proposition.

We introduce the following notation for the jump of the third derivative of the extremal

x at the knot si

(2.11) i x  x (asi + 0) - x(a i - 0), 1 - O'l,...,m

If x (a - 0) and/or x (s + 0) are not defined, they are to be replaced by 0.

-10-



The following proposition qiv,,s ox'.: :,- ti, a.atl v 1tio (x) which do not

involve quadratures.

Corollary 2... If x is the extremal P-interpolant of Propositioi 2.2. then

m-1
(2.121) Ulx) C ( - pi

)

-i i+l

and
m o

(2.12ii) u(i) = -2 A -x
i.o

Proof. If we dot-multiply (2.101i) by x and integrate over [0,s], using integration by

parts, we obtain

M-1

-2u(x) + 3u(x) - 10ci(pi+l - pi)

which is (2.12i). Now use (2.101i) at s + 0 and si - 0 and subtract to obtain

2Aix - ci - ca_ 1, which holds for i - 0,l,...,m if we define c c - 0. By (2.121)

we have

m m a
u(;) i10 ci(pi+ " 

p
i 1 c) = -2 1 piAi

so (2.12ii) is also proved.

Remark 2.2. Since U(x) - 0 only if x is linear, it follows from (2.1211) that an extremal
- T

P-interplant x that is not linear must have a discontinuity of x at some of the knots

(or else, x (p0 + 0) 0 0 or x (p - 0) O 0).

From an extremal x, as characterized in Proposition 2.2, one can obtain infinitely

many other extremals by shifting the terminals x(O) and x(l) along the rays that are tan-

gent to x at P0 and prI" The value of U(x) is not changed by these variations. We

wish to ignore these trivial portions of an extremal and will for this reason adopt the

• -11--
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following convention. If we speak of an extremal P-interpolant x with arc parametrizatic'.

x, knots pi " x(si) (i -O,...,m) and length s then, unless stated otherwise,

a 0, sm " s, and the terminals are p0 - x(O) 0, p" x(Sm) " X(S).

For some applications one wishes to constrain the p-interpolants further by prescribir-"

the length a of the arc between the terminals. Let the class of these P-interpolants be

called length-prescribed (they differ from the "length-constrained" interpolants of (31).

The next definition deals with the extremals for U in this class.

Definition 2.2. The admissible P-interpolant x, with arc length parametrization x x o 
-

x

knots p x(s) (i - O....,m), length a - S x(1) is a length-prescribed extremal P-

interpolant if

(2.13i) U'(x)[z + AS'(x) [z - 0

for any z e H2 (1) for which zo s;l(;} 0 (U - 0,...,m) and A c R determined so that

(2.13ii) SW f
I

For these extremals we have a characterization similar to that of Proposition 2.2; note that

S'(x) is given by

- -- l
S'(x)[yI f zy, for all y e H2 (I); x xos y - yea"

0

Proposition 2.3. The admissible P-interpolant x with arc length parametrization ;, knots

Pi "(a) i - O,l,...,m) and length ; m is a length-prescribed extremal if and only

if

( ) C 1,;1. -(0) 0,x(a) -o ,

(2.14) (11) (2x 3Kc2  
- 2; i S€2., cii ~~(2;," +, - X) -;.,i . ci' l-1...

m m .

(iLi) A; U(;) -I c -i(Pi - p ), U(x) + 2 ! Piaix

-12-



hold with x( 5  C Cs8ii si i

Proof. ro prove the implication (2.141,11) ( 2.l3i) one proceeds as in the first part of

the proof of Proposition 2.2. if, next, (2.141i) is dot-multiplied by x and integrated

over 10,;] one obtains, using integration by parts,

-2U~x) + 3U(i)- As c i c(p i - pi-l1 -2 1 piaix

which give (2.14111), which is seen to be equivalent to (2.1311).

Conversely, if (2.131) holds then selecting z e C (O,s) with support in j +1

i fi.xed, we have

a i+l *

f (2x + P- xj;=O-

where F is as In the proof of Proposition 2.2. it follows that

V 21 ~
(2 x + 3K x - X) (;it;i, c

The regularity properties of x are proved as before. The argument in the first part of the

proof shows, that given (2-141,11), then (2-14111) and (2.1311) are equivalent.

Remark 2.3. For any configuration P = ,l,.,p) there exists an extremal P-inter-

polant satisfying (2.14) with A c It. Indeed, if

m-1
LO X 1 i+1 - Pul

then the length-prescribed extremal x, which minimizes K2among all admissible P-inter-
0

polants with length equal to L >Lo is guaranteed to exist [61 and satisfies (2.131) (cf.

Appendix).



-2Remark 2.4. Curves x a. a , satisfying the equation

* 2~
2x + 3K x - Ax- c

are called elastica (cf. (Si), more specifically inflexional elastica if the curve has inflec-

tion points (which is the case if and only if X < c 2). Curves for which X. - 0, the case

of primary interest in this paper, will be referred to as simple elastica. Geometrically, sim-

ple elastica are characterized by the property that the angular variation between consecutive

inflection points is exactly wt (for all inflexional elastica the angular variation is > ff).

2A smooth oriented curve in 3 with continuous curvature which consists of finitely many

subares of the simple elastica and has (possibly) discontinuities of the curvature derivative

at the interpolation points p,,..., pM1  only is called an interpolating elastica (cf. [8I).

The next proposition deals with implications and equivalences of (2.1411). It should

be observed that these results apply to Equation (2.1011) as well, since the latter is the

special case of (2.1411) with A. - 0.

Proposition 2.4. Condition (2.1411) implies each of the following four conditions on

i) c c2  cx+ A

;x j[x, ci

(2.15)

x 2 xx

Moreover, (2.151) also implies (2.1411).

Proof: If (2.1411) is dot-multiplied by x, one obtains, since X K., xi

xx 0, xx + lxi 0

3K2x + 2;* K x + 2112 + 2xx Kx x + A



hence (2.15i). Differentiating (2.15i) we obtain

1
x Kx T £ ix

If K x(s) p 0 for same s, then IKx(s)1 - IX(s)I > 0 and x(s)/ Kx (s) is the unit vector

(- 0 (), x (s)). Therefore, K(s)= [X(s), ci] and (2.15ii) holds in this case. If

K x(s) - 0 and s is a limit of sn  such that K x(s) 0, then continuity of x and Kx

together with the previous argument give the same equation. On a fixed interval (;i-l,;i),

let r - {s : Kx (s) p 0} and let (a,) be any subinterval in the decomposition of

(si-1si)\r i We must show that (2.15ii) holds on (a,$). Now Kx  and K x are zero on (a,B).
- . a.

By the continuity of Kx on (s 1,s) it follows that K x(B) , 0 - [x(B), ci. • Moreover,

since K 0 0 on (a,B),

2
(2.16) x(s) - as + b, s e Ec,B], a,b c 3R

Thus, from (2.16),

[x(s) , cii (a,cil, s C (,B]

In particular, (a,ci ] - 0 and thus (2.15ii) holds on (a,B). Next, (2.15ii) follows from

(2.15ii) by integration. To show that (2.15iv) holds, let K (s) P, 0; then

x(s) - K (s)(-x (s), x (s)) and one obtains upon differentiating (2.15ii),

(s) lixs),cI jK(S.CX(f)- tAK 2 - K (s)]K 2 c x K

Thus, (2.15iv) holds at every point s for which K x(s) 0 0. The case when s is a limit

point of sn for which K x(s) 0 then follows immediately. The case when s is not such

a limit point is of course trivial.

To show that (2.15£) implies (2.14ii), assume ;(s) 0 0 for some a (;i; ,sl ). Since

K(s) and K(s)/jx(s)l are orthogonal unit vectors in 3 , we have, using (2.151) and the

fact that x(s)x(s) + Ix(s) I - 0,

The authors thank S. D. Fisher for a helpful suggestion here.
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Ci- (c x(s))x(s) + (cix(s))X(B)/I;(s)l2

- (,2(,, - dC (s) X()/Ix(s1 2

( X( ) x(s) + da

(3,c(s) - X)x(s) + (2x(s)x(s))x(s) + (2'()i(s)ils)/l;is)
2

x(s2 - )x(s) + 2x(s)

f3r whc(s))P ,tentesm
Kt

which is just (2.14ii). If s is a limit point of s for which x(sn ) p 0, then the sae

equation holds by continuity. If s is not such a limit point, then (2.141i) reduces to

€ -Ax(s), which is clearly obtained by dot-multiplication of (2.15)i by x(s). This con-

cludes the proof of Proposition 2.4.

At the end of this section we mention still another constraining condition for extremal

interpolants. It consists in fixing the angle that the interpolant x makes with a fixed

line at the terminal knot P0 - X(So) and/or pm = x(sm) " Thus, the condition is

(2.17) x(s0) - e0  and/or xlsm) %

where e0, em  are unit vectors in it2• We refer to these extremals as angle-constrained.

If x is an admissible P-interpolant with knots pi ) which satisfies the con-

straint (2.17) then any other P-interpolant in a sufficiently small H2-neighborhood of x,

satisfying the ese condition, is of the form x + ez where z c H2,

1- . 0 i - o,1...,m. ;.. 0 and/or ;.-l( - 0. It is easily seen

that if i Is an extremal P-interpolant with the added constraint x( ) - e0  then the "free

boundary" condition ; - 0 of (2.101) is replaced by x(s0) - e0 . Similarly if

x(sm) em is a constraint then this condition replaces 0() - 0. There is no other change

in the conditions of Proposition 2.2.

S-16- . K



53. Normal Representation of Extremals

In this section the dependent variable is an angle. Let T(- T ) denote the l-dincr.-

sional torus. # c T is represented by a real number (also denoted as) 0, one of the sEt

# + 2ki(k = 0, ±1, ±2,...). A continuous function 6 : (0,s) - T is represented by a con-

tinuous function (also denoted as) 6 . (0,;) -I R, one of the set 6 + 2kr. The derivative_

is always a unique function (0,s) -it R Lot (0,s) denote the class of absolutel, con-

tinuous functions e (0,s) -It for which e c L2 (0,s). Then the function x - x.

(0,.) St 2, defined by

8

(3.1) xe(s) ( f cos e. x 2(s) f sine
0 0

H2 (O,s) and represents an oriented curve C in the x x2plane, parametrized with
is inanx-paepaaeredwt

respect to arc length, x(O) - 0, i2/xi - tan e, O(s) is the angle which the curve C makes

Iwith the x -axis at arc length s, and 8 is the curvature of C at s. Conversely,5

given an oriented curve C with cartesian representation x e N210,s), parametrized with

respect to arc length, there is a unique function ex  (0,s) such that

• 2

x1(S) - x 1() + f Cos e x  x 2(s) - x2(0) + f sin e
0 0

We say that 8x  is the normal representation (n.r.) of C.

Curves C that differ by a translation have the same normal representation. If 6x  is

the n.r. of C then e + const. is the n.r. of a curve obtained from C by a rotation,

and -e is the n.r. of a curve obtained from C by a reflection at the x -axis. In a
x

geometric setting we may identify curves C which differ only by a congruence, and each con-

gruence class is represented by a single function 6 with the specification 0(0) - 0.

6(o) , 0 (or ;(0) 0 o if 6(0) - 0).

In many cases it will be convenient to characterize extremal P-interpolants by their

normal representation. For this purpose we replace Propositions 2.2 and 2.3 by the following

propositions whose proofs we omit.
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Proposition 3.1. The function A I (,s) is the normal representation of an extremal P-

interpolant. with knots p i U 0,l,...,m) at 0 0 <~ s, < *.< 9. and length a s

if and only if the conditions

Ci) 6 - C 1[01sI, o), 6(s) - 0

(ii) (2C) - c iCos i(s) + c isin i(s) for 8 (s i- .)s
(3.3)

c C. St, 2 i ,1...,m ,

Si 5.

(iii) ~ ~ 1(~s p1
ii) f Cos (sd pfsin 6Cs)ds -pit i l..m

0 0

hold with 6e ;- C C(aiii Ci

Proposition 3.2. The function ; C l(01s) is the normal representation of a length-pre-

scribed extremal P-interpolant with knots p,(i - 0,1,.. .,m) at 0 -a <~ < .. <S0 2 m
and length a -a if and only if the conditions

Sm

-2 2

(ii) 6 (s) -cicos 6(s) + c isin e(s) + A for s C s-1i

(3.6) Ciii IE it i2  i ,...,m

0 0 ~

Civ) A; f 8 1 c i(Pi7Pi-)
0 ivol

hold with 6 C



Remark 3.1. The conditions es. - 0) = 6(s. + 0) (i = l,...,m-1), e(o) = 0. and Ols ) 0
1i m

result in m + 1 conditions on the vector constants c,. ...,cm. Both in Proposition 3.1 and

3.2 we have

1 12 2

i) (Ci+l-ci) cos (s) + (C i+l-c)sin O(si) = 0 ,
i~lii =+ ±,..m 1

(3.7)
(ii) c Cos 0(0) + c sin -(o) + X o

ii 1 CO 1  c)+ 0

12(iii) c
1 

cos 8V + c
2 sin 8 ) + A = 0

m i m

where X is to be taken as 0 in the case of Proposition 3.1.

For use in Sections 4 and 5 we state a,-d prove

Proposition 3.3. The function 6e A 1l0,s) is the normal representation of an extremal

P-interpolant with knots p. (i - O, ... ,m) at 0 - so < ... < m  
and length ; s if

and only if the conditions

1 2

i 20(s) + ol sin (s) cos - 0 for
s(i) +) cE~

S C (Si-i' ci R

(3.8)
1  1 2 2(ii) (ci+Ci)Cos e(si) + (Cic+-Ci)sin 8(s) = 0

(iii) 8(0) =0. O(s) =0

hold with 6s 'Si) E C iss (i = l,...,m) and cm+I  0.

Proof. The forward implication follows directly from Propositions 2.3 and 2.4. The converse

implication follows upon multiplying (3.8i) by e(a) and integrating; if the integrated equa-

tion is evaluated at a - sm and (3.8ii,iii) is used, the constant of integration is seen to

be 0. Thus, (3.8) implies
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t(a) c coo 9 (s) c- sin 6(s) -0 for S c (S *S

-Ec C 10,;1, ± - ,...,m

and the result now follows from Proposition 3.1.
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14. Manifold of Extramals

As noted in the previous section, we may consider equivalence classes of curves diff.rir.:

by a congruence, with representer satisfying x(O) - 0, 8(0) - 0, 6(0) > 0; or e(0) if

i(o) - 0.

Definition 4.1. The extremal interpolant E is proper if:

(i) E has nonzero curvature Ki at each internal interpolation node
1

(4.1) 
sip i

(ii) Each internal interpolation node is a genuine knot, i.e., there is a dis-

continuity AiK 0 in the derivative of the curvature at si, i 1. rn-1.

Definition 4.2. The m-tuple (k k...k m ) of nonnegative integers is the mode of E if there

are k inflection points strictly between the (j-l)th and jth interpolation nodes; here,

an inflection point denotes a point of zero curvature and we note that 8 must change sign.

For a fixed mode (ki.... km), E - E (kl...,kI) will denote the class of proper (m+1)-

extremal interpolants E in the mode (kI1 ... ,k .

PrOpOsition 4.1. E is a (finite-dimensional) metric space under the metric

(4.2) d(E1 ,2) max I-L X (sE t) - dL X s

Here SE and x represent the lengths and Cartesian representations (parametrized w.r.t.

arc length) of Ej j - 1,2, respectively, where xj(0) - 0, J - 1,2.

Remark 4.1. We omit the routine proof. We observq that E is not complete. Indeed, if

each E) (m fixed) is embedded in the space of all extremal interpolants, with

metric described by (4.2), then the boundary aE of E may contain an extremal interpolant
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which is not proper. We also observe that if E is close to E2 then the configuration
1 2

interpolated by El is close to that interpolated by E2. This would not be true if E1, E2

were not restricted to a class E (see Example 4.2 at the end of this section).
1 m

Now let E C [0,s be the normal representation of some E c E. If
EE

0 = s o < s 1 < ... < s m = s E  are the interpolation nodes of E, put 8E (s) = Ci' i =0...,m

and LE = (al1 ... a1 Tm - 1 . Setting ci = -2vi we have from Propositions 3.1 and 3.3
M-1 1

2 m
the existence of a unique multiplier PE = ..'.'1m) C OR2) such that, for k l,...,m,

1 s) 1 2
(i) (s) + Cos 8 (s) + 11 sin e (s) = 0, s < < S

2 E k E k E k-lk

1 2
(4.3) (ii) 6E(s) - i sin e (s) + u cos 8 (s) = 0, s < s < s

E k E k E k-l k

and,

(iii) 8E(0)=, 6(s) 0

By introducing the more convenient notation

1
Bk = (AkBk), Ak  0, k e T, k " .... m

where

1 2
Ik -Ak sin Bk, k Ak cos 8k

we may rewrite (4.3) in terms of the multipliers Bk for k 1,...,m:

62s) + Ak sin(OE(s) k 0, k < s < sk

(4.4) (ii) UE(S) + Ak cos(BE(s) - 8k ) - 0' Sk-l < 8 < k

and,

(iii) 8E(0) = 0, E(s E 0

Since 6 = 0 !R not a proper extremal we must have E (0+) 0 0. We consider it as

part of the definition of E that
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(4.4iv) E (0+) > 0

for all E cE. Geometrically speaking, E contains only extremals which turn counterclock-

wise near the initial point.

Proposition 4.2. 0£ E C 1 OsE is the n.r. of an extremal E E E ( k) with inter-

polation nodes at 0 s < s1 < .. < s -Ba if and onlyif

1
A. 6 satisfies (4.4i -iv) for some A k> 0

B. sinCO. - 8 ~0
1 i+l

C. UE (0)>0 sgn (s (-I) i -l..ml

Proof: Since e E C Iwe have, by (4.41)

(4.5i) A i sin~cai1B.) - A i+1 sin(rA i- a -~ 0, i1,.

where a,. E(s) 8 (s -0) E (si+ 0) if andonly if

(4.511) A i cos(cli1Bi) - A cs Ce8 1- ) -+ 0

The two equations (4.51,11) are equivalent to (4.51) and sin(O -B ) -+ 0. Thus, the above

condition B. is equivalent to the condition that each interpolation node of E be a genuine

knot (see 4.111). There are k inflection points of E between the (i-I)th and i-th

ii

(4.6) sgn K agn Kc - (K1 ki E a

Since by (4.4iv) 6 E(s) >0 for all sufficiently small a, (4.6) is equivalent to the above

condition C. condition C. also implies that Ki 0 for i -,..ml thus condition

(4.11) is also satisfied.
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Rem-ark 4.2. Condition B. also implies

(4.7) A - A i~l0O, i1 ,..-

Indeed if A i - A~~ -~ 0 then by (4.51) sin(a .-B 0 sin(a.-B ) ,~ hence 8. 1 or

Bj =Bj1l + w (mod 2w), which contradicts B.

We now define

-={A C3m A A 0

(4.8) F - (0e TM sin(B± B0+l 99 0, 1 ,..nl

B3 - BE - (Bit ... B) 

By Proposition 4.2 each extremal E c E (t-k)determines a unique point BEc T(k m..k E~

In the next three propositions we shall describe the mapping E -~B via the composition of
E

two mappings. the homeceorphism

(4.91) J (a (EFBE)

of E onto 3(E) a Tml X (- T adMh
+ XT an h projection

(4 .911) 14:(,B) .4 B

of J (E) into M' + T ,which in a local diffeomorphism. The composition Mo J is a

global homeomorphism.

Proposition 4.3. The mapping J is a homeamorphism of E (ki.. Pk ) onto its image.

Proof: The continuity of J follows directly from (4.2) end (4.4); note that Bi ,...,ISB

can be expressed via (4.4) in terms of *it Kit ASc thus also in terms of

all aarc tan x 2 2/x E,1. Suppose now that 3(3) - (a E'88). We show that E3 E is uniquely

and continuously determined by its map (a3,33E). By (4.4)

sin(O (0) - B1  0, cona0(0) a B 0z E 1
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hence 0 - e (0) B + w (mod 2w). The restriction of eE  to s 0,s ] is now uniquely

determined from

1

(i eE s) - 1-2A1 sin (eE(s) - a1)]
2

(4.10) (ii) 8 (0) - 00

with a uniquely determined from

(iii) E(S1) - a1, eE () - 0 for k values of s in (0,s1)

Indeed if there is an s' > s1 for which E(S1) 1 e (Sl) P ol then E (s) - 0 for some

SI < a < s, hence 8 Es) 0 for more than k values of s in (0.sY). This clearly

leads to an inductive processi indeed if eE  is defined on [0,si 1, one obtains the

restriction of 6E  to [sis i+lI from the initial value problem defined by (4.4ii) with

initial values eE (si and EE(i), 8 i+l is uniquely determined from

E(si+) - i+ 1 E (s) 0 for ki+1  values of u in (si,si+I)

The process is terminated at i - m-l by replacing the condition eE (a +) - el+ by

E (Sm) - 0. Since the continuity of J-1 is an easy consequence of (4.4) the proof is com-

plete.

We determine now the image set

(4.11) S (k1,....k3 ) - J(E(k ..... Am))

The following are necessary conditions for (a,B) c S:

(i) sin(aQ - Bi) < 0 i 1,...,m-l

k 1+...+k
(4.12) (ii) If k 1 0 for some 2 < I < m-l then (-1) sin(a at- 1)  0

(iii) Ai sin(a " B- ) Ai+l sin(ai i+ ), i -
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Conditions (4.9i and iii) express that 62 ... ,s If

some kZ . 0 then there must be no inflection point between s£_ I1and s, hence

sin(OE - & Z1) does not change sign, or

sin(E() - ai) - 8E(sl > 0 for a <s<sa

Using C. of Proposition 4.2, we obtain (4.12ii).

We now show that conditions (4.12) characterize the image set S completely. We

observe that (4.12i.ii) define an open set in the (3m-l)-dimensional space Tm  R+- X F)

while equations (4.9iii) single out a 2m-dimensional surface in the open set.

Proposition 4.4. The image set J(E (ki...,k is

m

S . {(0,B) C x ( x F) conditions (4.12i,ii,i.) hold)
(ki.. Ok +

Proof: We need to show that if (,Bv) is such that 14.12) holds, then there are numbers

0 = a 0 < sm . sE and a function 3e  Cl[OSE]

such that conditions A., C. of Proposition 4.2 are satisfied and moreover,

(4.13) 1 ( ) ,
E i i

(condition B. follows from the definition of ?"). al and the restriction of 8 to

[so's 11are determined as in the proof of Proposition 4.3. Next, the restriction of eE  to

[s1,s2  (s2 as yet unknown) is determined from the initial value problem

k 1
1 26(s) + (-1) [-2A2 sin((s) - 62)] - 0

(4.14)

The solution is the n.r. of a simple elastica with inflection points at equally spaced

abscissas ak where 0(ak) - 62 or 82 + w (mod 2w). By (4.121 and iii) we have
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sin(a - a2) < 0, sin(u2 - 82) < 0

and, therefore, 6(s) attains the values a 1 and a 2 exactly once between any two consecu-

tive ok. Thus if there are k > 1 inflection points between sI and s2 there is

exactly one s2 for which (s 2 ) = a2* If k2 - 0 and, say 6(s1 ) > 0, then by condition

(4.12ii) sin(a 2 - aI  > 0, which implies that e(s) attains the value a 2  for s2 > si t

with no inflection point between sI and s2 By the same arguments the values of

s,. ,Sm and the restriction of 8 to Iss , .... [s , I are determined. sm - s

and E on Is MsM] are similarly obtained, except that the condition 6(s ) - am  is

1replaced by 8(s ) = 0. The obtained function 8E is in C [os E] because of condition

(4.12iii), and it satisfies (4.13) and conditions A. and C. of Proposition 4.2 by construction.

Proposition 4.5. The projection MIs is a local diffeomorphism onto an open subset

At(k of m TX . Thus S is a 2m-dimensional smooth (even analytic) manifoldil ~ ~ ( ... ,k) ofI+x .

* (S is not connected if m > i). The composition map H e J is a (global) homeomorphism of

E (ki . . .,k M ) onto M (kI ... km

Proof: Choose any (a ,B ) C S, 0a (aO...'a) and B 0  (A 1O...,A, 0'...,0 O ) . Let U
1- m *mm

denote the open subset of T x (+ x T ) satisfying conditions (4.12i,ii). Define a

mapping 0 : U - SP - 1  by

(4.15) 1i(,0B) - Ai sin(a i 8 i ) - Ai+1 sin (ai - Bi+l) i

With this notation, (a,B) e U is in S if and only if i (a,B) - 0 (i 1,...,m-l). Now

0 0 0 0
0, (aO 0 = 0 and the Jacobian [aO i/Qj] is nonsingular at (a ,B O), since it is a

diagonal matrix with diagonal entries

i 0 0 0 0 0 0(Ci OB O )  A coi - 00) - Aos+l costa Bi)

(4.16) 1 +1 i i+l

0 0We conclude there is, for every neighborhood U0 c U of (a0,B 0 ) a neighborhood NO  of

B in -m xT and a c1-mapping at of N0  such that a(S 0 ) (10  and # 1 (u(R).8) - 00 I7+
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for all B f NO . This proves that N is a local diffeomorphism.

By Proposition 4.3 the mapping J is a homeomorphism of E (kO...,km onto S. If t,.

composite map M oJ is not a homeomorphism, there must be (a,B), (a',B) in S with

a # a, say ai  a! (mod 2w). By (4.12iii) we have Ai sin(a i - ) - As+I sin(a i  i+l

S0 and Ai sin(ai' - 01) - As+l sin(a - 0,+1 ) - 0. These equations imply a! - CA, + - (mw.
= 1 1

2w). But by (4.12i), sin(C - Bi) < 0 and sin(a! - B.) < 0, which contradicts the pre-

vious conclusion. Thus Proposition 4.5 is completely proved.

Remark 4.3. It seems to be difficult to give an intrinsic characterization of the set
U(l, Exmlsso ~a-m *m.

. Examples show that it does not coincide with x T. It certainly contains

points B = (A,O) for each combination of the inequalities A A, A < A, .... A A.

Thus, M (k and ,. have at least 2M - disjoint components.

Remark 4.4. The following examples show that the results of this section fail if in Definition

4.1 either (4.1i) or (4.1ii) is omitted.
Example 4.1. Consider the 3-point interpolant E0  with n.r.

1.

(s) - (-2 sin .(s)) -0, 0 < s < s=f du
0 U0-

+ (-sin 00(s))2 - +

Here BE - (I,0,1,0), a0 = W, a= 2w, a2 - w. The mode is (0.0). E0  violates (4.1i)

since eO(Sa) - 0. For e > 0 let the extremal Z of the same mode (0,0) be given by
1

5 E = (1,O,), so that

C (s) - 1-2 sin eC ()]2 - O, '0 < a , ,

C (a) + - n ( - -) 0 0, , < a < - 2 ,c
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If 0 ('1,€  is close to = 2w then eC(s l0 - 2W - 6 for some 6 > 0. Thus, for

1 1
C (s1o) 1 12 sin 612 -(sin(6 + C))2

which is impossible. Thus, a (B) cannot be defined as a continuous function in a full

neighborhood of DO.

ExMPle 4.2. Choose v < a, < 2w -and consider the 3-point interpolant E, with n.r.

1" , du
i*(s) - (-2 sin 0,(s)1 2 , 0. 0 < a < a,, /2 sin u

1 i

-(sI (-2 sin 8,(s312  0, as < = 2 du

Her BE s. -s

Here 3E, (1,0,1,0), a0  , a1 - a*, 2  . The mode is (0,1). E, violates (4.1ii)

since A a A2" For w < < 2w let H be defined by the n.r.:

" 2 du
8(S) - (-2 sin (Sl)

2 
= 0, 0 < s =

O(s) - [-2 sin @(s)1 = 8 s < /2 n du
1 - 8 0 12 sin u

Here B = (1,0,1,0), a0  W w, a1 = a, a2 - 1, and the mode is (0,1) as before. Since there

are extramals for all v -c < 2w, 3 cannot be defined by B and its mode.
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J5. Perturbations of Configurations

In the last section it was seen that the extremal interpolants with m variable inter-

polation nodes (more precisely, those that belong to a fixed class E(kl ... )) form a

2m-dimensional manifold. One expects that an arbitrary configuration P = {OPl*.... pm} can

be interpolated by an extremal interpolant (possibly by one from each class E(kl...k Is

No solution of any kind exists for this existence problem. In this section we investigate

existence in the small. Does the set of configurations P for which extremal interpolants

2m 2mexist have nonempty interior in R ? More specifically, which P in R are interior

points of this set?

To attack this perturbation problem one is tempted to consider the mapping from the
2m-dimensional set A l~k I .... ,kn)that coordinatizes the elements of E (see §4),

2m-dimensxonalki se k...#k) m(
1 .. k

21Mor from another 2m-dimensional set of parameters, to the configurations in IR which are

interpolated. However, this mapping is so complicated - it involves the elliptic integrals

which are the solutions of the extremal equations - that little inaight is gained from its

consideration. For this reason we start with the extremals themselves, as defined by their

differential equations.

Let ,s m] - T1 be the normal representation of a given extremal interpolant

which interpolates the configuration

so that

o of Cos -, e ftjsn0 ''.'
(5.1)0 0

0 0 1 < m

Since we consider only extremals E with n.r. e near 0, hence with knots si  near sit
we choose 0, m n( - and extend 6 to the interval 10,.1, a sm + c,we choose(.€ -• O, a=e-

by setting

m) Sm < -
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We introduce two spaces of mappings from the interval [0,s]:

NBV - space of functions K : (0,s] - R of bounded variation V(K) and continuous

from the right with K(O) - K(s - 0) - 0 and norm V(W).

NBV1 . space of functions 8 : [O,s] * T , which are locally absolutely continuous

and have derivatives 8 £ NBV, with norm suplel + V(6).

Both NBV and NBV1  are B-spaces. Clearly 8 as defined above is in NBV and 6 is in NBV.

If 6 E NBV is the normal representation of an extremal E which interpolates the con-

figuration P = {0,p1 ... pm) at the nodes 0 s o < s1 < ... s < s (more precisely, we

speak of the linear extension of E to length ;) then the following equations hold (see

Proposition 2.4):

8 (s) + 1 63(s) =0, for si- 1 < s • i 1....m
(i) -

W(s)= 0, for s s < s

(5.2) (ii) 6(s. - 0) - 8(s.) - 0, i = 1

S. S.1 12(i f Co 8 - ' ,n0 P, .....
0 0

It is easy to show that these equations characterize the interpolant E completely.

We rewrite equations (5.2) by using the values

(5.3) ils = (ai ,  lsi + 0) = bit i l,...,m

as parameters (but a0 " OF bm  0 always).
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6(s) + f f (s-t)i3 (t)dt = a_ + bi lS-s 1 1 si s < s,..

(i}

i(s) - 0, s < s <

S.

(5.4) (i) ai a ai. + bil (aSi-Sii) - * f (si-t)63 (t)dt, i - 1....
si-l

ai  Si

o 0

Equations (5.4) define implicitly a mapping G from the space P c OR 2)m  of configurations

P to the space E of extremal interpolants E. To apply the Implicit Function Theorem we

introduce a mapping G on the produce space E x P to NBv x R x iR2m  as follows. We set

e= e 1 ..... a, b0 1..... b 1 ), where

Se NBV;si e lR, ai c R, bi sR

D = NW 1 x nlsa-C , si+Z) x R x 31

2and define a mapping G - (q, r i q) with components g c NBV, ri c It, qi E A as

follows:
a

g() = i(s) + f I (a-t) 3 (t)dt - ai 1 - biiaSil), s < s <S i2s-1 11.- <I

g(s) - i(s), sm < 8 <

~.I (St)63(~d

i-l

(iii) 1 1 2 2
Ii - finSa-p

Clearly, 3quations (5.4) are equivalent to

O(,P) " 0
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In particular we have G(§,P) 0 0, since we assume that 6 is the n.r. of the extremal ir:-

polant i for the configuration P. We need the Frechet differential G%(9,P) [i] where

- (4j tl,...,tt3 s1,...' m o.... mi)

is an increment to 0. The components of G(9,P) [Y] are denoted by g'. r!, q!. One finds

readily

g'(a + ( f (s-t) 2(t) (t)dt - 2 '-
i-i 1 11 -

(i)

- - Bi(s-si 1 ) + b t 1 , si_ 1 <s s i

g'(s) ;(a), s < <s

(5.6)

_~~ S 12 ,s_0t

(ii) rj = oi - ol - i_ Ais + (bi 1  A 3 c)t (s Q) + f (s-t)K2

si-l

Uii) (q), -f sin + t C" Bit (q 2 f " 60 + tl sin e

0 0 1

Here we have used the notations

(5.7) K -8, 6 i - 8(s i ) , Ki 6 (s i ) , As i - s 1

and the relation

1 1 3si-f2 0 3 =e(,il + °0) - e(si" o ) =hbi_ -  K(si" O )

which follows from (5.21) and (5.3).

The continuity of G' near (0,P) is readily ascertained from (5.6).

We can now state the main result of this section.

Teorem 5.1. %(6,p) is an isomorphism of

NBVX x m x M  onto MV m3e (R2n
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if and only if (4.P) satisfies the following hypothesis:

(A) The system for the unknown c € NBV1 :

2 = o on (si 1 1 ), i = .... m
(i)

0 = on (s ,s)m

s

(5.8) (ii) Ai@ + Aic f i sin( 8 -6 i ) = 0, i = 1...m
0

(iii) f J cos(8-8.) = 0, i = 1 .....m
0

has only the trivial solution 0 = . If (A) is satisfied then there are neighborhoods

2 mV in D and N in (R) of and P respectively and a diffeomorphism fl,

onto

such that c E N. defines an extremal P-interpolant E for P - H(O).

Remark 5.1. Explanation of the notations used above and in the following:

s= i' Ki =e(si)' *i *=(si)

A = K(s +0) - 0(sO), A±* = *(s +O) - *(s-O)

in particular A0K - K(8o+0), A = -K(sm-0), etc.

Proof: We first demonstrate the injectivity of the bounded linear mapping Gcw ,P) under

hypothesis (A). Thus, assume that for some T:

c ( ,P) [I') - 0

Then we have by (5.61):
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3 -2 -+ ;,0 on (s'~~ 11,...,

y 0 on (s a,) ,

W(S -0) + f ;s3tg A' ; t2 s i2 i-l i i-i

(5.10)

~ B 1 AB+ b i 1 t ~ -0

and using (5.6ii)

5li)(s-0) -t i + c(S.i-0)t = 0, i = '.'

Also by (5.6i)

(5li)4(s 1+0) + b +bt = 0

Since b. = K(S.i+0), the last twlo equations yield

(5.12) i4+ t .A i K 0, i1 ,.,

The remaining equations (qi =) (q.2P - 0 (see 5.6iii)) are equivalent to
1 1

(5.13) t. - f *' sin(g-6 j , i = '.'
01

(5.9iii) f 4' cos(O-6 ) 0, i -= .'
0

when (5.13) is substituted in (5.12), one obtains

(5.9ii) + AiK f *' sin(g-i) - 0, 1
0

By hypothesis (A) the equations (5.91.11,1i1), which coincide with Equations (5.8), together

with 4' o NBV1  imply 4'-0 on [0,%)1. (5.91) then implies 4'-0 also on Is.n. Then

by (5.13), t~ 0 Ui-l..,) and by (5.11), a-0 (i1 .. u) Finally, by (5.10),
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8. = 0 (i = 0,...,u-1), thus T = 0, hence G6(6,P) is injective.

Conversely if hypothesis (A) is not satisfied, i.e. system (5.9i,ii,iii) has a nontrl,;.-

solution * f NBV1. then determine the t. from (5.13), the a . from (5.11) and the

from (5.10). T = ( ..; t I . ; Mil ... ,0 .... B 'SM-1) is then a nontrivial solution of

G4(A,P) [] = 0, thus G4 (6,P) is not an isomorphism.

2mTo show surjectivity of G4(,P) onto NBV x - J 2, assume we are given h I NBV,

U. E JR, v. E R (i = 1,...,m). We must find e € NBV1 , t. E JR, ai E JR, R, such

that (see 5.6)

(i) g'(s) = h(s), 0 < s < s

(5.14) (ii) r! - ui, i = l,...,M

1 * 1 2 2 i - .,
(iii) (q.)' vi, (q)1 - v2,  ,..

In particular, (5.14i) requires (see 5.61)

i-0) + L 1- i_- a l ;ti-1

(5.15i) 
si-l

-C Li_ - iAi; + bi lit i-1 h(si-0)

and (5.1411) rquires (see 5.611)

a-ci - As + (b t

i-i i i- 2 1 1 i--t 1

S i-i

The last two equations imply

(5.161) i-0)- a i + K(Si-0t i = h(si-0) - ui

(5.141) also requires
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(5.161±) $1i+0 " ) - * a+O)ti " h(; +0)

We therefor* must have

+0 "(io Ai Kt i + A ih + u,, i 1,..

Kt+
The last equations (5.14iii) are (see S.6iii)

( 5 . 1 7 1 ) - i n + t i  o o V , c o 5i ' + , i s n  - v ,i

(.The general solution a N I of 15.14i1 is the sum of a particular solution and the

linear cambination of 3m functions with the coefficients 1 ... ao-

When this * is substituted in (5.171 and ii) a nanhoamoneous system of 3m equations for

the unknowns ai 0 t is obtained. The homogeneous part of th:* system corresponds to thc

case h - 0, ui - 0, vi - 0, and it has only the trivial solution a, 0, 6, . 0, ti - 0,

as shown in the first part of the proof. This demonstrates the surjectivity of G4((P)

and finishes the proof of Theorem 5.1.

The utility of this theorem is illustrated by the fact that it readily implies the follow-

ing important result.

CoRl___ 5.2. Suppose P - to, is the ray configuration pi - (10) (i - 1 ..... m

with the trivial interpolant i. Then hypothesis (A) is satisfied, hence the conclusion of

Theorem 5.1 holds.

Proof.3 0 in this case. if we put

(5.18) s - x, " X ", y(x) - fX

0

then y(O) -0 and Equations (S.8) becme

y 0 on (xi 1 1xi), i "

y- 0 on (KmX)
(5.19)

y"(x1 +0) - y"(xi-0) - 0. 1 - l,-..m

y(x1) - 0 i 1 ,...,m
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while y' C NRV , i.e. y" e NBV, in particular y"(O) 0 0. These are exactly the equations

for a natural cubic spline that interpolates the points (xiO) (i - O,...,m). It follows

that y(x) z 0, and the corollary is proved.

Remark 5.2. We briefly draw a connection between the above corollary and natural cubic spline

interpolation. The mapping r from the space of configurations P to the space of extremal

interpolants E is implicitly defined by G(e,P) = 0. Perturbation theory looks for a pair

e - 4 , - + z (z - (zl... ,m}) close to the initial pair §,P for which

(5.20) G4( 4 ,) [fl + G1(4,) [Z] = 0

It is readily seen that this is system (5.9iii,iii) except that (5.9i1) is replaced by

(5.211 ) cos(1-Oi - i cos -i sin e
0

Also, Equation (5.13) is replaced by

(5.21ii) t -f *sin(8O'i) + z 1 i Co e +i sin e
0 i

Now suppose the initial configuration P and the interpolant E are the ray configuration

and trivial interpolant, as in Corollary 5.2. Further suppose P is the configuration

P - ((xo'Yo), xfyl) .... (xa'YM)}' X0 - YO - 0

- 1 2
with the xi - -i s and yi i all. Then (5.21i,ii) become (in the perturbation

approximation)
xi

(5.22) f * I Y1 ai + ti xi V
0

moreover

(5.23) X(s) .f cos .f coo a., y(S) - f sin .- Isin f ;,J "
0 0 0 0 0
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The perturbed extremal E is now the graph of the function x + y(x), which satisfies Equa-

tions (5.19), except that the last equation is replaced by Y(xj] = yi. Thus y is the

natural cubic spline that interpolates the data (xieyi) (i - 0.1,...,m).

We have shown that the cubic spline interpolant is the result of linerization of extrmal

interpolation (in the sense of making JK ds stationary) near the trivial interpolant for the

ray configuration.

Remark 5.3. The differential equation that appears in hypothesis (A)

(5.241) + 3 2; 0

where K = e is defined by the equation

(5.24ii) -e + 1 3 02

can be completely integrated by quadratures alone. Indeed * - 1 is clearly one integral;

(5.25i) 1 -

is another; for (4 )  and 0 (4 ) + (3/2) 2 0. The third one is

(5.25ii) *2(8) - SK(S)

In the special case where K(s) E cs, three linearly independent integrals are

2(5.25iii) 1, s, a

In the remainder of this section we discuss the replacement of hypothesis (A) by a

simpler condition, which requires only that the value of an explicitly given function (involv-

ing many quadratures) at Sm be pi 0. For this purpose we introduce a condition on arcs of

simple elastica. The arc of E from a to 8i is said to be ordinary if it is either

straight or
l-1 2
1 ) (; [ ")coo +K" sin ,

(5.26)
- -2 2 a + a

+ i- ) (;il)1sin i- Ki 13O l + ± K niI . -sin pi 0
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One seen readily that only exceptionally is such an arc not ordinary. For example, the ar-.

from so0M0 to.sit whore -.0, K 00 is not ordinary if and only if

Pisin e1 - iCos 01 = 0

i.e., the chord popJ is tangent to E at p1.

Theorem 5.3. Suppose the extremal i consists of ordinary arcs only. Let l~.(0) =

be the solution of system (5.81, exclusive of the condition on A RIO(0 is explicitly con-

structed below). Then hypothesis (A) of Theorem 5.1 is satisfied if and only if

(5.27) *0 (sm - 0) + ~s -0) f to sin( - 0 ) 0O
0

Proof: Let #i Xi be the integrals of Equation + -32 (case K 1 0) for which

- 'il+ 0) -0, iil+ 0) -1
(5.28)

X(; 1  (a 1 + 0) =0, + 0) =1

These are linei. combinations of 1, #11 *2* One finds easily

i"-Q 2 - - L -

OilKi,)- Ki-lK Kil(s --_)K

(5.291)

where we have used the abbreviation

£ 2 1- 4(5.291i) 1/pi 2
(Ici=) + (i)

We construct *~successively on the intervals ~I*n Ci 1 (1.., On (0, we

have since 0 0 (0) If 1 %(0) - 01

(5. 301) *0 -1 + *Q(O)#lf

with *0satisfying condition (5.9i1i)s
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(5.3011) 0020-1 0e°) + ;0°(0) fo 41 c°'og 4 o
0 0

One finds the last integral to be p1 61. Thus, io(0) is uniquely determined from (5.30ii),

and (5.301) gives #0 on (0, 1 ). (if K - 0 on [0,'Is then one finds %0(s) -

- 3(s/ . Assume * has been determined on [O(sI (i < a). Then 0si-l and

( 0) are known, hence *O(Sii) can be found from condition (5.8ii).

" i-

(5.31) ;0(;i l) " ;O(-i-O) + A 11 I0"10 5in(-ei.1)
0

Then if K F 0 on [ 1 ;i ] we have

(5.321) *0 0 *O(;i-) + 0 (;i-l)Xi + 0O(ai-l )#i

and to satisfy condition (5.911):
'i-i ;

* o COS-1i) + L [o(;i-I) +  o;i-)xi]Cos(;ei
0 i-i

(5.32ii)

+ io(;i-I)L Q i cob(10'i) o -

One finds, using (5.291) and

;- - - -2 -2

L co -isp-~i ;',L ine P -i
si-1 si-I

that the last integral in (5.32ii) is pii 0 0. Thus 0 (ani) is uniquely determined from

(5.3211), and (5.321) gives #0 on [; 1-11 ]

Zn the omitted case c - 0 on [;il,;i (5.32iii) are replaced by
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-2

(s ,) q# +o; z ;0 Go (s,,-;i, + oi~l G s;~z2

(5.33)
si. 1

(ii) f *0 cos(0.ei } + 0 ( i .1( i- ) + (si_11 (*i_ i-l }0

The conclusions remain the same as before.

With *0 found on [O,; ) there remains condition (5.9ii) to be satisfied:
US

5

(5.34) ;0 fl (;.n IM -0 .,.-0 sainl-

00

System (5.6) has a nontrivial solution if and only if the constructed integral *0 satisfies

(5.34). This proves the theorem.

Example 5.1. To illustrate the utility of the preceding theorem consider the configuration

P = (CO,0), (a,O), (a,b))

with the extremal interpolant I whose n.r. 8 is defined by:

;(s) = 0 0 < a < a
(5.35)

B~s) 1/2-!(a) (0/b~lsin B(s)) / , a < s

Here B and * are the definite integrals.

s- i 1 2 ,i(s sinl/2= 1/2sin + (b/0) -in 1 / 2

0 0

That I does indeed interpolate the point (ab) follows from

fcos S de - f (l/e)os t dt (b/i)sf sin 1 2/Cos 0
a 0 0

fsinidom(b/0) fsin sin1/ -b
a 0
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Using the construction of the preceding theorem, one finds by straight forward computations

2
*0(S) = 1 - 3(s/a), 0 t a < a

2 2-
2(s) S(B) -a)8(e), X2 (a) - 2(b/0) 8(s)

o(S) = - 2 - (12/)(W/B)
21(a), a < < ,

;0(S-0) + ;(;-0) *0 sin(- 2) b +

0

By Theorem 5.2 unrestricted perturbation of the 3-point rectangular configuration P is

possible.

Even for this simple example we were not able to prove this result in the more direct way,

by expressing the parameters of the elastic& spline in terms of the coordinates of the inter-

polated configuration.

Example 5.2. Let P be the "hair pin configuration"

= 1(0,0), (0,6), (0,0)), 6 I T (2 min) 1 / 2

0

with the extremal interpolant i whose n.r. 6 is defined by:

0(0) - 0

O(s) - 12 sin 9(s) 1/2 , 0 < a < a f (2 in)"

0

(-2 sin (s)l1/2, a < a < 2o

Then (O) ; c(o) = I(2o) -0, Ac1 - K(0+0) - g(o-O) - 2. One finds readily

-(s) k) , X (s) ; c(s), 0 s < a

*2(s) - 8 ;(s), X (s) i c(s), a <_ < 2

0 + 26 (), o - a < 20
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Then

2a
0 (20-0) + e(2-0) f *0 sin(-2w)

0

6 20

=-28 - [f sin + f 2(1 + 26)sin i8
0 a

-- 26- 16-6-26] - 0

By Theorem 5.3 hypothesis (A) is not satisfied, thus it cannot be concluded that the hair pin

configuration with the extremal interpolant - permits perturbation. Indeed, one can show

directly that if P is replaced by the perturbed configuration P - {(-c,O), (0,6), (E,O)}'

there exists no extremal interpolant close to i no matter how small c 0 0 is. On the

other hand, if P is replaced by P - {(0,0), (0,6), (0,)}, which is also close to P,

then there is an extremal interpolant E near Z, E coincides with E for the arc from

(0,0) to (0,6), the remaining arc is the simple elastica joining (0,6) and (0,E). Thus,

we have an example of singular behavior taking place in the perturbation from P to P.
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36. Special Cases of Open Extremals

We study in some detail in this section extremal P-interpolants for some special con-

figurations.

A. Two Point Extremal Interpolants

Let P be the configuration P - (pp 1 }, PO = 0. For an extremal E with normal repre-

sentation i,8(0) - 0, we have by (3.3):

(i) C [0,;), i(o) - 0(0) = 6(s) = 0

(6.1) (ii) a2() = clcos i(s) + c2sin 1(s), 0 < s <

(iii) j cos -P. f sin -
0 0

(6.11) implies c
1
- 0 and c2 sin i() - 0. Clearly, either c

2  
0 0, yielding the extremal

6(s) 0, p0 - 0, p, 1  (s,0), or, c
2 

0 0. In this case we write c 
2 

2/1. Differentiation

of (6.1ii) gives by Proposition 2.4 the differential equation,

(6.2) O(s) + con ;(s) = 0, 0 < s < s

When this equation is integrated over (O,s) and 0(0) - O(s) - 0 is used, one obtains the

first of equations (6.1iii) with p1 . 0. From the equation,

(1/2)6 = -sin ,

it follows that -w < 0 if I > 0 and 0 < < v if I < 0. Since the choice t < 0

mounts to a rotation through w of the extremal corresponding to I > 0 or, to a change in

orientation transfozing 0 into -0, we may assume A > 0 and -w < 8 < 0. In this case,

p2 -d - -1p 0 - p1 1 in the second equation of (6.1111). We may rewrite (6.1iii):

(6lii ooslo 0 sin -d
0 0

From (6.111), 1(s;) - 0 is equivalent to sin 0C;) - 0. Since sin i(s) < 0 for 0 < s < s

and S is Continuous, there are only two possibilities: S(;) - 0 or 6(s) = -w.
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Altogether we have shown that (6.1) may be replaced by the simpler system

(j) ~-2( = -sin i(s), 0 < s < s 6(0) = O, 6(s) = 0

or -wr,
(6.3)

(ii) f sin =-d
0

If s is interpreted as physical time, 1. as the displacement along a circle of radius Z,

then (6.3i) represents the pendulum equation with pendulum length 1, unit mass and unit force

downward, starting from horizontal position with velocity 0 at s = 0 and reaching velocity

0 again at s - s when 6 = 0 or -w. The pendulum swings from horizontal position 6 = 0

at s = 0 through one or more half-swings to horizontal position at s - . The kinetic

analogue of the elastica equation was discovered by G. Kirchhoff; see 18, p. 399].

One interpretation of the interpolation condition (6.3ii) is that the time integral of the

kinotic energy j1 (e)2 divided by the maximum kinetic energy. ., is the prescribed "minimum

time" d. The length of the pendulum is the main unknown of the problem.

The solution of (6.31) for various values of 1, can be derived from the solutions of the

same system for I - 2. Indeed, the transformation

(6.4) B(s) - /(t22. s), ; - , 9

converts (5.3i) to the "normalized system":

(6.5) e2(s) -- sin i(s), 0 <s<s 2 (o) 0, (;) 0 or -w

The solution of the pendulum equation (6.5) with i(s) - -w is well known. It is

explicitly given by

(6.6) i(s) = - - 2 arc sin[2-1/2sn(2"1 /2(s -) 0 <) "<

where 2"1/2s is the half-period of the Jacobi function sn(u) - sn(ui 2"1/2) and arc sin

is the branch of the inverse of sin with range [- F. ]. ,or a and U U(e) - J e2

0
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we find in terms of the complete elliptic integrals of the first and second kind (13]:

(6.7)(i) . f d_ . 21-i dt 2/-2-K( 2 ) ,
0 sin 0/ t 2 ) (t2/2)

and

1!1 121/12(ii) t = 2 it ,2f2E12
1

/
2

1 - K(2"/ 2 ) 

0 0 l-t/2

The analytic continuation of (also denoted as 6) to all of R is given by i(s) - -#(-a)

for s < 0 and

(e(2s-s) for s < 8 < 2i

(6.8) (S) I

Y.e(s-2ki) for 2ks < s < 2(k+l)s, k - 1,2,...

It is seen that 8[02s] also solves (6.5), the value at the new boundary point 2i being 0.

In general 8 (k -1,2,...) solves (6.5), with 6(ki) - -v or 0 depending on whether

k is odd or even. These are all the solutions of (6.5) with free right end-point.

We now use the solution 6 of the normalized problem to express the general solution of

the boundary value problem (6.31) for fixed s 0 0. It is given by

(i) 6(s) = g(k s s), 0 < s < s

(6.9) 
s

(ii) it = 2(s/ks)
2

where k is any positive integer. To satisfy the remaing condition (6.3ii) we must iwe

-d - sin i(s)ds - s sin i[k s)ds -
0 0

ks 0

hence

(6.10) s- (;/U)d

independent of k.
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We write 0k for the solution corresponding to k ( 1,2,...), Zk for Lhe corresordin'-

parameter value in (6.3i) and Uk for the value of the curvature functional for ek" Thus,

(i) ik(s) - 6(k s), 0 < s < -(iO)d

(6.11) (ii) 1k - 2(d/kU) 2 = 2(;/ks) 2
, k = 1,2,...

Uk _ s .2 k2r2 d (/o

(iii) -k If ek(s)ds - k /d - k ( /s)t

All these solutions have the same arc length s = d/UO 2.2d. Also 0k(S) = 6 (ks) for
k 1

0 < s < s/k and e k(s) = 81(ks-s) for s/k < s < 2s/k, etc. Thus the curve represented b%

e consists of k congruent arcs, all similar (contracted by the factor 1/k) to 61. The
k l

curve whose normal representation is e is characterized as that arc of the simple elastica
k

whose endpoints are inflection points and which has k - 1 internal inflection points (it

belongs to class E (k-1) in the notation of 14). For the above physical interpretation the

result means: If the ratio of the time integral of the kinetic energy to the maximum kinetic

energy (in a motion from the horizontal to the horizontal position) is to be the fixed number

d then the pendulum must have one of the lengths Ik - 2(d/kU) 2 (k - 1,2,...) and the

pendulum makes k half-swings in total time ; = (i/O)d.

We ummarize the results in

Proposition 6.1. There are countably many extremal P-interpolants Ek interpolating a two-point

configuration with Jp0 - p4l - d > 0, one for each k - 0,1,2,.... E0  is the trivial ray

interpolant; 1 k is an arc of the simple elastica with inflection points at the terminals and

k - 1 internal inflection points. The normal representation k of Ek  is given by (6.11),

where 6 is the elliptic function (6.6). Each of the Ek (k -1,2,...) has the same length

- (u/6)d, where s and U are given by (5.7). The extremal value of the curvature

functional for Ek is -k - k 2U1 (k = 0,1.2,...), where -
= -2/d .

S 1 is U /

Remark 6.1. It is shown in [5) that none of the extrmals E., E2P... provides a local

minimum.
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B. Ray and Rectangular Configurations.

Corollary 6.2. Suppose P - 10,p,....fpm is the "ray" configuration where pi = (silo)

and 0 < a1 < ... < s . Countably many nontrivial extremal P-interpolants are obtained from

the 2-point extremals of Proposition 6.1 as follows. Let x0S represent any of the nontri'viz

extremals for the configuration {0,pl. Define xs, as one of the (p ,P2
} inter-

polants of Proposition 6.1 or the negative of it so that x(s - 0) =x(s + 0). Continue in thi'

way to the intervals [s 2 ,s 3 ].[sm 1,Sm. The obtained curve represented by x is an

extremal P-interpolant.

Corollary 6.3. Suppose P = {popl,..,pM) is the "rectangular" configuration where the

angle between pjIP and Pip (i - 1,.. .,m-l) is either 0 or ± 1/2. Let x represent a

P-interpolant such that the segment from pi to Pi+l (i = 0,...,m - 1) is any of the extre-

mals of Proposition 6.1 (including the trivial one) and so that x is continuous. In this way

countably many extremal P-interpolants are obtained for any rectangular configuration P.

C. Angle-Constrained Two Point Extremal Interpolants

The boundary tonditions

(6.12) x(O) * (p 1-Po) y 0, X(s) * (pl-Po) - y1 ' 0 < Yi 1P-Po1

are added to the problem of Section A, replacing the zero curvature endpoint conditions.

Proposition 6.2. There are countably many extremal {p0 ,p 1}-interpolants constrained by con-

ditions (6.12) if yo y 1 "

Proof. Suppose 6 is the normal representation of the sought extremal. It is easily seen

that one can normalize 1 so that 8 satisfies equation (6.31), except that the values of

at 0 and ; are not 0 and -w, but given numbers 000,01 0 > > - a .6 e - 0 or

o - 00 - w. It follows that the solution of the problem is a symetric arc of the curve

(6.91), with k even if 00 e lf k odd if 00 a 1 + r, scaled and moved so that the

terminals are P0,Pl.
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D. Regular Configurations.

Suppose P = {p0 ,P,...,pm} is a "regular" configuration, by which we mean each segment

i = 0...m - 1) is of the length d and makes the same (exterior) angle u,

i a < 21, with the following segment pi+lPi+ 2 . We seek an angle-constrained P-interpolant

x for which

(6.13) x(0) • (p 1 -P 0 ) = X(s) • (pm-pM = d sin

Corollary 6.4. For each regular configuration P = {po,pl,...,pm} there are infinitely many

extremal P-interpolants constrained by the condition (6.13), which consist of m congruent seg-

ments.

Proof. Let z represent one of the infinitely many extremal {p0 ,p }-interpolants E of
0 1 0

length sI  constrained by

z(O) (pl-p0 ) - z(s8) •(p-p 0 ) = d sin 2

and such that z(0) x (p1-pO) = - z(S1 ) x (p 1 P0 ) . Let x represent the uniquely defined

P-interpolant E that extends E0 by congruent pieces. Then x has continuous slope and

curvature and satisfies (6.13); hence E is one of the sought extremals.

E. Length-Prescribed Two Point Extremal Interpolants.

We assume now the length s of the extremal {p0 ,p1 -interpolant E is prescribed.

Suppose 6 is the normal representation of E. With the proper choice of the coordinate sys-

tem we conclude, using Proposition 3.2, that 6 must satisfy the following conditions (assuming

S> d)

(i) e(0) = 5(s) - 0

(6.14) (ii) - es) - -sin i(s) + A, 0 < s < s, i > 0, A

5 s
(iii) f cos (s)ds = 0, f sin 6(s)ds -d

0 0
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S to 0 0  -) then

(u,.15) 
X - sin 60

In particular, -1 1. We may again interpret Equations (6.14) as describing the motion

of a pendulum swinging from some position e0 where 0 - 0 in fixed time ; to another

position whore 0 - 0 and so that the time integral of the kinetic energy satisfies a certain

cond i t ion.

By (6.14ii), O(s) - 0 if and only if 6(s) is 60  or -v - e0. Th4 condition

f 0os * - follows from (6.141i). Thus, (6.14) may be replaced by the simpler system
0

(i) 0 2(s) a sin 6o - sin i(s), 0 < . (0) - ,

(b.6) 0(;) - 00  or -i - 0
\0

5

(ii) f sin -- d
0

we make the transformation (6.4) again, to obtain the normalized systems

!2(6.17) 02(s) - sin 00 - sin i(s), 0 < < ;., 6(0) - O  (s) -8-0 - 60

The solution is qiven by

(6.181) 6(s) - 6(s;6 O) - - 2 arc sinlq on(2 1/2 l-i/2)i q
2
11

0 2

q - Isin(s/4 + o/2)1

-1/2 -where 2 a in the half-period o0 the Jacobi function sn(u q)

dO 0 dO
(i0a ) .sine ein 6 e) / in a + sin 0

0 a0 i n 0 0

.9 Vsin 6 0+ sin 0
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We observe that i( 0 ) increases monotonically from 0 to = as 6 varies from -- /.
0 0

w/2. For A-- f sin and U- fe we have
0 0

ir/2 sn

(6.18iii) a = a(eO) -2 f d/2 sin 0 de ,- l0 in + sin 8

w/2
(6.18iv) - 0(60  - 2 f lsin e0 + sin e de

-80

We also observe the identity

(6.19) s(O)sin 60 + d(e - U(60)

The analytic continuation of (also denoted as 9) to all of IR is given, as before,

by (6.8). Then we put

() 0 (S) - 0(k Zs), 0 < a < a, k - 1,2,...k a
(6.20)

(ii) ik -2 (/kj)
2

These quantities still depend on 80. e0 must be determined so that the last condition

(6.20iii) -d - f sin iklalds - f sin 5(kis/a)ds
0 0

-- f sin ;(s)ds - (e
s0 ie0 0

0

is satisfied. Thus e0  is determined from the equation

0 d(6.21) 
e0)

from 0 to 2 J sin 1/2 Od6 and then decreases from this value to -- as 80 varies from
0
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0 to w/2. Clearly a(,) - 0 for some 8, betweer 0 and T/2 (8, 1 400). The ratio

a(80)/;(e0 ) can be seen to decrease monotonically on [-w/2,e,] with values in the entire

interval 10,1]. Therefore, for any 0 < d < s, there is a unique 80 in 1-n/2,6,) such.

that (6.21) holds. For this unique eo, s - ace 0) is determined according to (6.18ii), the.

8k and Ik from (6.20). Together with X - sin 80# these quantities satisfy the original

system. O(e0) is given by (6.18iv) and the value of U for e by

sytm (8. 2 by;8

(6.22) Uk: e 1 k sds k Weo0

Altogether we have proved

Proposition 6.3. There are countably many extremal {p0 ,p1}-interpolants Ei, 2,... of pre-

scribed length s > ip0-plJ. Their normal representations are given explicitly by equations

(6.18) and (6.20), with the angle of inclination e0  at p0  determined from (6.21). For the

value of the functional U, the relation k = k ( = 1.2,...) holds.

Remark 6.2. The curves of Proposition 6.2 are subarcs of inflexional elastica (cf. Remark 2.4).

For illustrations see [8, p. 404, Figures 48-53).

Remark 6.3. In the beam interpretation the joint at p0  exerts a force R whose tangential

component is sin 80/1 and whose normal component is cos 60/Z. Thus R acts along the line

joining p0  to p1. The magnitude of the force is I/L. For fixed ; and d, the force

Rk in the mode Ek has magnitude k2 R. For 80 < w/2 the tangential force on the joints

is a pressure, for e0 > w/2 it is a pull.
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7. Examples of Closed Extremals

Let P - {p0 ,P,,...,pml be a configuration as in 12. If x c H i.e  in such that
2

x(t.) " p. ( i - 0,...,m) for soame 0 < to < ... < t < 1, and besides x (k)+) - x(k)(U-)

for k = 0,1.2, we say x represents an admissible closed P-interpolant with knots Pi"

Suppose x represents an extremal closed P-interpolant, i.e. x makes the curvature functional

U stationary in the family of admissible closed P-interpolants. Then the graph of x is a

closed curve which has continuous curvature everywhere, and the curvature is continuously

differentiable at all points other than the knots.

In this paragraph we examine four classes of closed extremals:

A. Closed extrumals of prescribed length with no knots.

B. Closed syunetric extremals with two knots.

C. Closed extremals for rectangular configurations.

D. Closed extremals for regular polygons.

A. If x represents a closed extremal with no knots, of prescribed length a > 0, para-

metrized with respect to arc length, K(s) its curvature at s, then one finds, as in

Proposition 2.3, that

(i) C 1c[0,s, x(k) (0) = x ( k ), k = 0,1,2,

t, 21 1 2
(7.1) (11) 2zx + 3K X -XX C , C e a

(iii) A f K,
•0

Conversely if x satisfies (7.1) then x represents a closed extramal with no knots, of pre-

scribed length s, parametrized by arc length. For the normal representation 0. where
5 5

.I cor , ;2) . sin 0, (7.1) gives
0 5
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6i) e C [0,s], f cos = sin I ,
0 0

((s) = 8(0) + 2kr (k = 0,....); 0(0) 8(s)
(7.2)

(ii) 2 cIcos8 + c2sin + A

5 -2ciii) i=4f
s 0

Proposition 7.1. For each k = 1,2,... there exist exactly two closed extreaals with no knots

of prescribed length s > 0. These are the circle of radius s/(2ki) transversed k times

and a contracted figure eight configuration traversed k times.

Proof. We can omit (iii) in (7.2) since it follows from i) and (ii). We write A sin(i + a)

with A > 0, a e T for c cos ; + c2 sin 8. If i represents an extremal then 0-a

represents the same extremal rotated by the angle a. Therefore, (7.21i) may be replaced by

-2 2, 2 2
6-A sin 8 + w 0  where w0> 0. (W 0 0 means A~ - 0, which is impossible by (7.2111)). We

may also assume k = 0,1,..., in (7.21). Thus, (7.2) is replaced by

5 5

(i) c C'[O,;], f cos sin1 - 0
0 0

(7.3) i(;) 6 8(0) + 2kv (k = 0,1,2 .... ) (0) = 8(s)

22 2
(i) a2 . A sin8 + W 0, A > 0, t0 > 0

Case 1. A = 0. In this case we may assume 00 . 0. Then 5(s) = u0 s and w - 2kw. hence

WO n 2kw/s. For k = 1,2,....,ek s) - 2kws/s satisfies all conditions. 6k represents a

circle of radius s/2kw, traversed k times. The value of U for 0k is (2kw/;)

Case 2. A > 0, w2 > A. We may assume A - I since if 8 is a solution of (7.3) for A > 0.
1/ 2=_12

of length s > 0, then e defined by i(A' a) is a solution for A - 1WA, N0  > 1, of

length A = A1 .2  If e satisfies (7.3) then ;(s) is uniquely defined by

(7.4) s 9(s) dip
712 + gin V
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2k in (7.3i) must be positive, and w is uniquely defined by

2kw do/

For defined in this way we have, after a change of variable,

5 kv
sin g(s)ds - f sn d

0 -ki / 0

kI i p d o2 -+ sin0 2 dT_ < n

sin 0 sin

2 / 2
which contradicts (7.3i). Thus no solution exists for wo > A.

Case 3. A > 0, W < A. We may again assume A - 1, thus w 0 < 1. Conveniently replace

by e+w, andwritesin with 0 < 0* < 1. Thus (7.3ii) is replaced by

(7.3ii') 2 - sin 0, - sins

In this case -i -6, < (s) < 8,, thus we must have k - 0 in (7.3i). Since g(s) cannot

be monotone, we must have i(s) - 0 and sin !(s) - sin 0, for some si it is no restrictionL

to assume that this happens for s - 0, and 8(0) - e,, 8(0) - 0. As s increases from 0! .

to some s,, 5(s) decreases from 0, to -W - 8,, when 0(s,) - 0. Since -w - e, # e, the

curve cannot be closed yet, and as s increases further, g(s) increases up to the value e,,

which is attained for some s - s**, and 6(C,,) a 0. If we set 0(t) - (2s*-t), we see

that e1 satisfies (7.311') and 6i(s,) - e(s,), hence e = 6, i.e.

O(s, + t) = ;(a, - t)

and, in particular, s,, - 2.,. Thus the curve obtained is symmetric w.r.t. the point s - 0.

If we put a2(s) - -W - ;(s,-s) then we see that 0 satisfies (7.31ii) and

a2(0) - ;(0) - 6, henc

(s' - t)5-
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the curve obtained is oyimtric with respect to the line 6 - 0 and e(s,/2) = -r/2.

The curve will be closed iff the conditions I cos 6 - 0, f sin o - 0 are satisfied.
0 0

The first equation follows directly from the symmetry of the curve. We are left with

S** 0*

(7.3i') 0 -f sin 1(s)ds - 4f sin 1 di-0
0 -w/2 /sin e. - sin 0

-1Let the last integral be denoted as Ife,). Clearly 1(0) --- U'0 and
2

I( +. Thus, there is a value 6, between 0 and w/2 for which (7.3i') holds, and it

is easily seen that there is only one such value (approximately 6, - 40*). With this value

of 0, we have obtained a closed extremal E of length s*,. It is an analytic curve, crossing
1

itself at s - i s,,, and consists of 2 congruent loops, each symetric w.r.t. the same axis

(an illustration appears in [8, p. 404] as an example of an inflexional elastica). By proper

scaling the curve will have the prescribed length ;. The differential equation for the

normal representation of the curve E is

2 * 2 * (.) -
a6 sin 0, - sin OlD 08i(O) 0*'Ol

Thus, the inverse function 0 - s(S) is givqn by

a(S) - a I #:&. -. Cs(O) = a sin 0, - sin 0

where the constant a is determined frem
- .

-w/2 sn 6* - sin 0

The other extremals 2,23,.... in this sequence are obtained by traversing E, 2,3,...
11

times with scale factor .,.,... , thus their normal representations satisfy
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Case 4. A0 > 0, 2 A. In this case the solution of (7.3i) is monotonically increasing in

s but does not attain e0 + 2w for finite s.

Remark 7.1. The restriction of e1(s) to 10,i] represents a length-prescribed extremal

(length = s/2) interpolating the "loop configuration" {p0,Pl with P0 - Pl. This is not a

closed extremal, although it is a closed curve. Each 81 (ks) (k - 1,2...; 0 < s < 2 ) can also

be considered as then.r. of such an interpolating extremal. The curvature functional (potent-

ial energy) for this extremal is seen to have the value

24k [f do 2sin e,
i -ir/2 i'sin 8, - sin s

Clearly this function of ; has no stationary value. It follows that there exists no extremal

interpolant (unconstrained) for the loop configuration.

Remark 7.2. The length-prescribed extremal interpolating the loop configuration can also be

obtained as the limiting case of the extremal of Sec. 6.E as d - 0. There it was pointed out

that d(8) = 0 for 8. satisfying (see 6.18111)

0 w/2 sin e d

-e, sin 0* + sin 8

Clearly, this is the above condition (7.31').

S. We turn to the problem of closed extremals I with two knots. We consider only

extremals that are symmetric with respect to the line joining the two given knots. We assume

PO 
= (0,0), p, - (0,-d) with d > 0 are the knots and that x - (- , ) represents the

extremal L parametrized by arc length. If O is the length of I and ;(0) - po. then

o~k) - .o(k)(0
() (a) = )(0) for k - 0,1.2, and because of the symtry, x(;/2) = Pl. Thus, we may

assume .1 -. 2* . I --03(

x1(s) -- (_-ns), x 2s) x (s-a), o <_a < a

. . .;1( _ ;1;). o, ;2(o) _ ;2(;). ,. ;2 . -d

* el 42 02 . 0 .
(0) .x (a) x (1) Ii 0) x ( x (s) 0
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If t i: t-he normal representation of - then by (7.5) and Proposition 3.1,

0 0 0 01

W) Cos 6(s) - cos e(s-s), sin e(s) - -sin ;(s-s)

0<,s ,
0 0

s/2 s/2 * 5

(ii) f cos =o, f sin0-d. - c -os a0
0 0 0

fsin - 0
0

(7.6) (iii) 9(0) - 0, 9(s j, 8()-2jl; j 0 or -1

(iv) 0(0) = Se e(s) 0 ,

(v) 8 (s) cos 9(s) + A1si s), 0 < s < s/2

1 o ;s A 2sin _02< *
2 2

S1 122

s s/2 in (v) gives A I A1  0; substitution of (M) in (v) gives A 2 = 2 . Thus1 2 1 A 2 - -)A .ve s T h usA

(7.6v) becomes

(7.6v') e (S) = -A sin 8(s), 0 < a < s/2

=+Xsin9(s), /2< ,<

When the conditions 9(0) 0 0, (s/2) - 0 or -w, 9(0) - 6(s/2) = 0 are taken together with

(7.6v'), it is seen that 8 O,;/2) is one of the functions ek of 16. with 8 replaced by

s/2. The symietry condition gives for 8 ,

e(s) - -2ji - ;(a-.), s/2 _ s_ s

Thus we have found all solutions of system (7.6) and have proved

0 0 0 0
Proposition 7.2. There are countably many closed extromals 2lF20 ... with n.r. 81. 8 ....

with two knots which are ysietric with respect to the line joining the knots. k is obtained

from the open extremal Ek of Proposition 6.1 by reflectiom at the line Joining the knots. Each

k has the sa. length 2S, whore a is the length of the open ,. The value of the
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curvature functional U for the extremal Ek is 2kU 1  where is the valuc for tKh fA.

E1•

C. In this section we consider rectangular configurations as defined in Corollary 6.2.

Proposition 7.3. Let P - {p0,...,pM*p01 be a rectangular configuration as in Corollary 6.2.

There exist countably many closed extremals with knots at p

Proof. Since P is closed there must be an even number of right angles between consecutive

segments pi1itPPi+l. To connect p to pi+l we use either the trivial extremal or one
of the 2-point open extremals of Proposition 6.1, with the proviso that we switch from one clas

of extremals to the other if the angle at Pi is a right angle, otherwise (if the angle is 0)

no switch is made. It is easy to see that infinitely many closed P-interpolants with con-

tinuous curvature everywhere can be obtained in this way.

D. Let P " 'PR be the vertices of a regular polygon ordered as they come when the

polygon is traversed counter-clockwise. Define p for i > m by periodicity: pa p i-M"

Let P m~p p {P ''"p1) for k - 12..... is a configuration of the kind thatmo k 1l+kF ... 1 #P

Corollary 6.4 applies to, and if the construction used there is applied to Pm,k one obtains

closed extremals. Thus we have

Proposition 7.4. For each regular configuration Pk as described above there are infinitely

many closed extremal P-interpolants, each composed of congruent segments. or each k, there

is precisely one such extremal whose intersection with the polygonal path comdecting the points

of Pm,k is precisely Pr,k" For k - 1, this extremal a circumscribes the polygon counter-

clockwise and its representation x satisfies

(Pi+l -Pi) " - " l lP lo n -l ..

If the polygon is inscribed in a unit circle, each of the a ares of ay be expressed

in tem of the inverse of its normal representation.
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2 sin , , . •

(771 a 2 e2E( B) -( 2 2 "0

where cos ,r,-iOand cos 0. - w,/i. in this case, the length sm  and the energ-'

U3  of Em are given explicitly by,

2m sin 0 F )
(7.711) 8 m -

2 m 2',

and

• 4m 1l -
(7.7111) U = [2E( -2 0 1 F(i2 0

sin -
m

Finally,
*s(6)

(7.8) T as m-e

so that the extremals have the unit circle as limit.

Proof. We sketch the verification of (7.7). Starting from the differential equation

22 sin e

we obtain

* do• d 0~ O < e < T-Qm , a~ 1

a-~e - aX f 2 m
a

Since the distance between adjacent points of Pm1 is 2 cosa the consttnt Y. is deter-

mined from

W/2

-m coon am/1 Ai t -0 dV

sin 1

r22I2_v,O r- 45,2 2
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This gives (7.7i) . (7,7ii) is immediate and (7.7iiij follows from,

* s2m w/2
U* 2mf 6d !f /sin iPdPm 0Y

m

The calculation (7.8) is routine.

Remark 7.3. It is shown in [51 that the extremals E are stable, i.e. they provide a local
m

minimum for the curvature functional.
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Appendix

Let P {P0.....Pm' be given and let L0 = -pi+l-Pi 1 . We assume that P is noti- l

collinear.

Theorem. For every L > L0  there exists a length-prescribed extremal P-interpolant of length

L satisfying Definition 2.2.

Proof. The existence of a function x, parametrized with respect to arc length, for which

U(i) = min{U(x) : x is an admissible P-interpolant

of length L)

is demonstrated in [6]. (The modification required for the ordering of the points in P is

trivial.) If X denotes the closed subspace of H2 [0,L] consisting of those functions

vanishing at the knots,

0< < < . < I <L

of x, i.e., at those points s. for which x(si) =pit i= 0,...,m, define f to be the

mapping of X into R obtained by f(y) = U(x + y) and let H be the function such that

H(y) = S(x + y) - L, where S is the usual length functional (cf. (2.13ii)). Clearly,

f(O) = min{f(y) : H(y) = 01

and H(0) is surJective, since P is assumed non-collinear. The result follows from the

Lagrange multiplier rule (see, e.g., [9, Theorem 1, p. 2431).
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ABSTRACT (continued)

is carried out. Here {p m c IR2  is prescribed, x is a vector-valued function

with curvature K(s) at arc length s and the interpolation nodes s4 are free.
Problem (1) may be viewed as the mathematical formulation of the draftsman's techni-
que of curve fitting by mechanical splines.

Although most of the basic equations satisfied by these nonlinear splines curves
have been known for a very long time, calculation via elliptic integral functions has
been hampered by a lack of understanding concerning what precise information must be
specified for the stable determination of a smooth, unique interpolant modelling the
thin elastic beam. In this report, sharp characterizations are derived for the extre-
mal interpolants as well as structure theorems in terms of inflection point modes
which guarantee uniqueness and well-posedness.

A certain type of stability is introduced and studied and shown to be related to
(linearization) concepts associated with piecewise cubic spline functions, which
have been studied for decades as a simplication of the nonlinear spline curves. Many
examples are introduced and studied.
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